用于皮肤伤口愈合的仿生天然产物的医用粘合剂研究进展Progress in medical adhesives for biomimetic natural products for skin wound healing
陈玉琴;王晓萍;张曦木;
摘要(Abstract):
组织粘合剂或伤口敷料可以保护伤口表面并提供有利于伤口愈合的环境。组织粘合剂作为封闭创口或止血的缝合线/钉的替代品,近年来在创伤修复领域受到越来越多的关注。但目前大多数商用组织粘合剂存在粘合强度不足,生物相容性欠佳,功能单一等问题。幸运的是,自然界存在许多天然粘性产物,它们为医用粘合剂的开发提供了新的思路。本文将就天然粘性产物粘合机制及受其影响开发的相关仿生粘合材料进行综述。
关键词(KeyWords): 皮肤;伤口愈合;组织粘合剂;天然粘合剂;仿生材料
基金项目(Foundation): 国家自然科学基金(32070826)
作者(Authors): 陈玉琴;王晓萍;张曦木;
DOI: 10.19593/j.issn.2095-0721.2023.01.012
参考文献(References):
- [1] Huang Y, Mu L, Zhao X,et al. Bacterial Growth-Induced Tobramycin Smart Release Self-Healing Hydrogel for Pseudomonas aeruginosa-Infected Burn Wound Healing[J]. ACS Nano, 2022, 16(8):13022-13036,DOI:10.1021/acsnano.2c05557.
- [2] Xi Y, Ge J, Wang M,et al. Bioactive Anti-inflammatory,Antibacterial, Antioxidative Silicon-Based Nanofibrous Dressing Enables Cutaneous Tumor Photothermo-Chemo Therapy and Infection-Induced Wound Healing[J]. ACS Nano, 2020,14(3):2904-2916,DOI:10.1021/acsnano.9b07173.
- [3] Liang Y, Li Z, Huang Y,et al. Dual-Dynamic-Bond Cross-Linked Antibacterial Adhesive Hydrogel Sealants with On-Demand Removability for Post-Wound-Closure and Infected Wound Healing[J]. ACS Nano, 2021, 15(4):7078-7093,DOI:10.1021/acsnano.1c00204.
- [4] Edmiston CE, Jr., Krepel CJ, Marks RM,et al. Microbiology of explanted suture segments from infected and noninfected surgical patients[J]. J Clin Microbiol, 2013, 51(2):417-421,DOI:10.1128/jcm.02442-12.
- [5] Du D, Chen X, Shi C,et al. Mussel-Inspired Epoxy Bioadhesive with Enhanced Interfacial Interactions for Wound Repair[J]. Acta Biomater, 2021, 136:223-232,DOI:10.1016/j.actbio.2021.09.054.
- [6] Matossian C, Makari S, Potvin R. Cataract surgery and methods of wound closure:a review[J]. Clin Ophthalmol, 2015, 9:921-928,DOI:10.2147/opth.S83552.
- [7] Lang N, Pereira MJ, Lee Y,et al. A blood-resistant surgical glue for minimally invasive repair of vessels and heart defects[J]. Sci Transl Med, 2014, 6(218):218ra216,DOI:10.1126/scitranslmed.3006557.
- [8] Nam S, Mooney D. Polymeric Tissue Adhesives[J]. Chem Rev,2021, 121(18):11336-11384,DOI:10.1021/acs.chemrev.0c00798.
- [9] Ma X, Bian Q, Hu J,et al. Stem from nature:Bioinspired adhesive formulations for wound healing[J]. J Control Release, 2022,345:292-305,DOI:10.1016/j.jconrel.2022.03.027.
- [10] Waite JH. Mussel adhesion-essential footwork[J]. J Exp Biol,2017, 220(Pt 4):517-530,DOI:10.1242/jeb.134056.
- [11] Kord Forooshani P, Lee BP. Recent approaches in designing bioadhesive materials inspired by mussel adhesive protein[J].J Polym Sci A Polym Chem, 2017, 55(1):9-33,DOI:10.1002/pola.28368.
- [12] Guo Q, Zou G, Qian X,et al. Hydrogen-bonds mediate liquidliquid phase separation of mussel derived adhesive peptides[J]. Nat Commun, 2022, 13(1):5771,DOI:10.1038/s41467-022-33545-w.
- [13] Hu Z, Wu W, Yu M,et al. Mussel-inspired polymer with catechol and cationic Lys functionalities for dentin wet bonding[J]. Mater Today Bio, 2023, 18:100506,DOI:10.1016/j.mtbio.2022.100506.
- [14] Taghizadeh A, Taghizadeh M, Yazdi MK,et al. Mussel-inspired biomaterials:From chemistry to clinic[J]. Bioeng Transl Med,2022, 7(3):e10385,DOI:10.1002/btm2.10385.
- [15] Zhang C, Xiang L, Zhang J,et al. Revisiting the adhesion mechanism of mussel-inspired chemistry[J]. Chem Sci, 2022,13(6):1698-1705,DOI:10.1039/d1sc05512g.
- [16] Xue B, Gu J, Li L,et al. Hydrogel tapes for fault-tolerant strong wet adhesion[J]. Nat Commun, 2021, 12(1):7156,DOI:10.1038/s41467-021-27529-5.
- [17] Liang Y, Xu H, Li Z,et al. Bioinspired Injectable SelfHealing Hydrogel Sealant with Fault-Tolerant and Repeated Thermo-Responsive Adhesion for Sutureless Post-WoundClosure and Wound Healing[J]. Nanomicro Lett, 2022,14(1):185,DOI:10.1007/s40820-022-00928-z.
- [18] Hu J, Yang L, Yang P,et al. Polydopamine free radical scavengers[J]. Biomater Sci, 2020, 8(18):4940-4950,DOI:10.1039/d0bm01070g.
- [19] Huang S, Liang N, Hu Y,et al. Polydopamine-Assisted Surface Modification for Bone Biosubstitutes[J]. Biomed Res Int, 2016,2016:2389895,DOI:10.1155/2016/2389895.
- [20] Bal-Ozturk A, Cecen B, Avci-Adali M,et al. Tissue Adhesives:From Research to Clinical Translation[J]. Nano Today, 2021,3610.1016/j.nantod.2020.101049.
- [21] Xu Z, Wang T, Liu J. Recent Development of Polydopamine AntiBacterial Nanomaterials[J]. Int J Mol Sci, 2022, 23(13)10.3390/ijms23137278.
- [22]!!! INVALID CITATION!!![21],
- [23] Fung TM, Gallego Lazo C, Smith AM. Elasticity and energy dissipation in the double network hydrogel adhesive of the slug Arion subfuscus[J]. Philos Trans R Soc Lond B Biol Sci, 2019,374(1784):20190201,DOI:10.1098/rstb.2019.0201.
- [24] Wilks AM, Rabice SR, Garbacz HS,et al. Double-network gels and the toughness of terrestrial slug glue[J]. J Exp Biol, 2015,218(Pt 19):3128-3137,DOI:10.1242/jeb.128991.
- [25] Li J, Celiz AD, Yang J,et al. Tough adhesives for diverse wet surfaces[J]. Science, 2017, 357(6349):378-381,DOI:10.1126/science.aah6362.
- [26] Geng X, Wei H, Shang H,et al. Proteomic analysis of the skin of Chinese giant salamander(Andrias davidianus)[J]. J Proteomics,2015, 119:196-208,DOI:10.1016/j.jprot.2015.02.008.
- [27] Guo W, Ao M, Li W,et al. Skin secretion and shedding is a good source for non-destructive genetic sampling in the Chinese giant salamander(Andrias davidianus)[J]. Z Naturforsch C J Biosci,2013, 68(3-4):164-168,DOI:
- [28] Deng J, Tang Y, Zhang Q,et al. A Bioinspired Medical Adhesive Derived from Skin Secretion of Andrias davidianus for Wound Healing[J]. Advanced Functional Materials, 2019,29(31):1809110,DOI:https://doi.org/10.1002/adfm.201809110.
- [29] Liu Y, Li Y, Shang H,et al. Underwater instant adhesion mechanism of self-assembled amphiphilic hemostatic granular hydrogel from Andrias davidianus skin secretion[J]. iScience,2022, 25(10):105106,DOI:10.1016/j.isci.2022.105106.
- [30] Liu X, Mao X, Ye G,et al. Bioinspired Andrias davidianusDerived wound dressings for localized drug-elution[J]. Bioact Mater, 2022, 15:482-494,DOI:10.1016/j.bioactmat.2021.11.030.
- [31] Tramacere F, Beccai L, Kuba M,et al. The morphology and adhesion mechanism of Octopus vulgaris suckers[J]. PLoS One,2013, 8(6):e65074,DOI:10.1371/journal.pone.0065074.
- [32] Huang R, Zhang X, Li W,et al. Suction Cups-Inspired Adhesive Patch with Tailorable Patterns for Versatile Wound Healing[J]. Adv Sci(Weinh), 2021, 8(17):e2100201,DOI:10.1002/advs.202100201.
- [33] Palecek AM, Garner AM, Klittich MR,et al. An investigation of gecko attachment on wet and rough substrates leads to the application of surface roughness power spectral density analysis[J]. Sci Rep, 2022, 12(1):11556,DOI:10.1038/s41598-022-15698-2.
- [34] Khani M, Materzok T, Eslami H,et al. Water uptake by gecko β-keratin and the influence of relative humidity on its mechanical and volumetric properties[J]. J R Soc Interface, 2022,19(194):20220372,DOI:10.1098/rsif.2022.0372.
- [35] Mahdavi A, Ferreira L, Sundback C,et al. A biodegradable and biocompatible gecko-inspired tissue adhesive[J]. Proc Natl Acad Sci U S A, 2008, 105(7):2307-2312,DOI:10.1073/pnas.0712117105.
- [36] Xia S, Chen Y, Fu W,et al. A humidity-resistant bio-inspired microfibrillar adhesive fabricated using a phenyl-rich polysiloxane elastomer for reliable skin patches[J]. J Mater Chem B, 2022,10(44):9179-9187,DOI:10.1039/d2tb01955h.